Skip to main content
Ctrl+K

Introduction to Electronic Structure Methods

  • Introduction to Electronic Structure Methods

Exercises

  • 1. Linear Algebra in Quantum Mechanics
    • 1.1. Review of Linear Algebra Basics
    • 1.2. Basic Concepts in Quantum Mechanics
    • 1.3. Working with vectors using Numpy
  • 2. First steps in Psi4
    • 2.1. Basis Sets - Defining Vector Spaces
    • 2.2. The Hydrogen Atom
    • 2.3. A more complex system: H\(_{2}\)O
  • 3. Large Basis Sets, Dissociation Energy and Geometry Optimisation
    • 3.1. Effects of Basis Set Size: The Molecular Case
    • 3.2. Recording a Dissociation Curve for H\(_2\): RHF vs. UHF
    • 3.3. Geometry optimization of \(H_2O\)
  • 4. The hartree fock procedure in detail
    • 4.1. Hartree-Fock Procedure for Approximate Quantum Chemistry
  • 5. Post-Hartree Fock Methods: CI and MPn
    • 5.1. Post-Hartree Fock Methods: Theory Recap
    • 5.2. Recovering Correlation Energy: B atom
    • 5.3. Homolytic Cleavage of the C-F Bond
    • 5.4. Influence of correlation on geometry: HNO\(_3\) molecule
  • 6. DFT vs (Post) HF Methods
    • 6.1. Methylcyclohexane A-value
    • 6.2. Geometric properties: NO\(_3\cdot\) radical
  • 7. Troubleshooting, Pitfalls, Traps
    • 7.1. Fixing errors in the calculations
    • 7.2. Hard and easy cases for DFT
    • 7.3. Integration grids
  • 8. Finding Transition States and Barrier Heights: First Order Saddle Points
    • 8.1. Theory
    • 8.2. Locating Transition States: Constrained Optimisations
    • 8.3. Recording a Potential Energy Profile: The Intrinsic Reaction Coordinate (IRC)
    • 8.5. IRC analysis
  • 9. Potential Energy Scans and Visualisation of Trajectories
    • 9.1. Potential Energy Scans and Visualisation of Trajectories

Lecture

  • Basis functions in quantum chemistry
  • Coupled cluster
  • FAQ
  • Repository
  • Open issue

Index

By Laboratory of Computational Biochemistry and Chemistry - Prof. Ursula Roethlisberger

© Copyright 2023.