Review of Linear Algebra Basics

1.1. Review of Linear Algebra Basics#

To use quantum mechanics, you should be familiar with linear algebra operations. The following exercises help you to review some basic operations with vectors and matrices.

Exercise 1

Calculate the vector product \(\mathbf{c}=\mathbf{a}\times\mathbf{b}\) with

\[\begin{split} \begin{aligned} \mathbf{a} = \left(\begin{matrix} 2 \\ 6 \\ 4 \end{matrix}\right) \quad \mathbf{b} = \left(\begin{matrix} 5 \\ 1 \\ 7 \end{matrix}\right) \end{aligned} \end{split}\]

and, for the same \(\mathbf{a},\mathbf{b}\), the scalar product

\[ \begin{aligned} d = \mathbf{a}\cdot \mathbf{b} \end{aligned} \]

Exercise 2

Evaluate the matrix product \(\mathbf{C} = \mathbf{A}\mathbf{B}\).

\[\begin{split} \mathbf{A} =\begin{aligned} \left(\begin{matrix} 6 & 8 &2 \\ 9 & 1 & 5 \\ 7 & 4 & 3 \end{matrix}\right),\quad\mathbf{B}= \left(\begin{matrix} 9 & 6 & 7 \\ 5 & 4 & 4 \\ 3 & 2 & 8 \end{matrix}\right). \end{aligned} \end{split}\]

Exercise 3

Evaluate the determinant for the matrix \(\mathbf{A}\).

\[\begin{split} \mathbf{A}=\begin{aligned} \left(\begin{matrix} 1 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 3 \end{matrix}\right) \end{aligned} \end{split}\]

Exercise 4

Does the exponent of an operator always satisfy the relation \(e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}}\) ? Start from the definition of the matrix exponential.