Practical: TRP Cage using OpenMM
Contents
Note This tutorial should be run on Google Colab and not on JupyterHub.
Change the runtime to use a GPU by selecting Runtime
-> Change Runtime type
-> select GPU
6.3. Practical: TRP Cage using OpenMM#
We will use a modern and open source simulation program to run our molecular dynamics simulation of the TRP cage protein.
OpenMM is different from most other simulations tools in that it is not controlled by executing different subprograms in the command line but instead one uses a python program to control the flow of our simulation. This allows us to easily rerun parts or the whole simulation.
Below is a detailed description of our workflow. The respective parts you need to change during the exercise are indicated.
6.3.1. Imports#
First we need to install the necessary modules and import them. We install our simulation package openmm and parmed, which we use to load our Amber trajectory files.
# Uncomment below code on Colab
#!pip install -q condacolab
#import condacolab
#condacolab.install()
# Uncomment on google colab
#!conda install openmm ambertools=22 &> /dev/null
#!pip install py3Dmol
# The last part simply makes the command silent. Remove &> /dev/null if there are problems
import py3Dmol
Exercise 7
Follow the instructions in this file and run the folding simulation.
Calculate the correct number of steps for the simulations to run 50 ps of heating and 20 ns of dynamics and report those numbers in your report. These sections are marked in the following with #CHANGE HERE
.
6.3.2. Creating our system#
Creating the system will be done using tleap which is part of the Amber software package. Linear peptides can be easily created using this tool.
Below we create this file using python and save it as leap.in
to the filesystem.
Using !cat filename
we can check whether it was sucessfully created.
Then we execute tleap using our input file using the command !tleap -f leap.in
.
leapin = """source leaprc.protein.ff19SB
set default PBradii mbondi3
TRP = sequence { NASN LEU TYR ILE GLN TRP LEU LYS ASP GLY GLY PRO SER SER GLY ARG PRO PRO PRO CSER}
savepdb TRP trp_cage_linear.pdb
saveamberparm TRP trp_cage.prmtop trp_cage_linear.nc
quit
"""
with open("leap.in","w+") as f:
f.writelines(leapin)
!cat leap.in
!tleap -f leap.in
You will be greeted with plenty output, lets go through it step by step.
>$ tleap
-I: Adding /home/packages/amber20/dat/leap/prep to search path.
-I: Adding /home/packages/amber20/dat/leap/lib to search path.
-I: Adding /home/packages/amber20/dat/leap/parm to search path.
-I: Adding /home/packages/amber20/dat/leap/cmd to search path.
Welcome to LEaP!
>(no leaprc in search path)
This is leap starting up telling us that it has added several directories to its search path. These directories contain the parameters of the amber force field that we now will load.
Next we need to load a specific force field. We do this using the following command:
source leaprc.protein.ff19SB
If you want you can take a look at this file you can make a new cell and use the following command:
!cat /usr/local/dat/leap/parm/parm19.dat
Here you will find the masses, bond distance and force constants etc. that make up our forcefield.
This produces the following output which are all force field parameters that are loaded.
----- Source: /usr/local/dat/leap/cmd/leaprc.protein.ff19SB
----- Source of /usr/local/dat/leap/cmd/leaprc.protein.ff19SB done
Log file: ./leap.log
Loading parameters: /usr/local/dat/leap/parm/parm19.dat
Reading title:
PARM99 + frcmod.ff99SB + frcmod.parmbsc0 + OL3 for RNA + ff19SB
Loading parameters: /usr/local/dat/leap/parm/frcmod.ff19SB
Reading force field modification type file (frcmod)
Reading title:
ff19SB AA-specific backbone CMAPs for protein 07/25/2019
Loading library: /usr/local/dat/leap/lib/amino19.lib
Loading library: /usr/local/dat/leap/lib/aminoct12.lib
Loading library: /usr/local/dat/leap/lib/aminont12.lib
In the next line, we set the radii of the atoms to be used for the implicit solvation.
set default PBradii mbondi3
This produces the following line in the leap output:
Using ArgH and AspGluO modified Bondi2 radii
Next, we create a new UNIT in AMBER using the sequence
command.
TRP = sequence { NASN LEU TYR ILE GLN TRP LEU LYS ASP GLY GLY PRO SER SER GLY ARG PRO PRO PRO CSER}
Then, we save a PDB file of our system.
savepdb TRP trp_cage_linear.pdb
This creates the pdb file on disk and produces the following output:
Writing pdb file: trp_cage_linear.pdb
/usr/local/bin/teLeap: Warning!
Converting N-terminal residue name to PDB format: NASN -> ASN
/usr/local/bin/teLeap: Warning!
Converting C-terminal residue name to PDB format: CSER -> SER
Checking Unit.
As you can see, the N and C-terminal residues have a different residue namer in AMBER compared e.g to a normal serine. This is due to the fact that here the force field parameters slightly deviate from the parameters of a serine involved in two peptide bonds versus one single peptide bond for a terminal uncapped serine.
In the last step, we now generate the parameters in AMBER format and the input coordinates in the NetCDF format (which is a binary format).
saveamberparm TRP trp_cage.prmtop trp_cage_linear.nc
This produces plenty of output and a warning:
/usr/local/bin/teLeap: Warning!
The unperturbed charge of the unit (1.000000) is not zero.
/usr/local/bin/teLeap: Note.
Ignoring the warning from Unit Checking.
Building topology.
Building atom parameters.
Building bond parameters.
Building angle parameters.
Building proper torsion parameters.
Building improper torsion parameters.
total 63 improper torsions applied
Building H-Bond parameters.
Incorporating Non-Bonded adjustments.
Not Marking per-residue atom chain types.
Marking per-residue atom chain types.
(Residues lacking connect0/connect1 -
these don't have chain types marked:
res total affected
CSER 1
NASN 1
)
(no restraints)
The first warning we can safely ignore as in the implicit solvent treatment we will use, we cannot use counter ions to neutralize our system. Instead we will use a screened charge model to emulate the presence of ions in the solvent. Next we see terms, that align with the functional form of the AMBER forcefield:
Again, we can look at the contents of the parameter file !cat trp_cage.prmtop
and we see that it does not contain the coordinates anymore in contrast to the pdb file.
6.3.2.1. Looking at the starting structure#
# show starting structure here
with open("trp_cage_linear.pdb") as ifile:
system = "".join([x for x in ifile])
view = py3Dmol.view(width=400, height=300)
view.addModelsAsFrames(system)
view.setStyle({'model': -1}, {"stick": {'color': 'spectrum'}})
view.zoomTo()
view.show()
You appear to be running in JupyterLab (or JavaScript failed to load for some other reason). You need to install the 3dmol extension:
jupyter labextension install jupyterlab_3dmol
Exercise 8
Include an image of the starting structure in your report. Are there any residues which would contribute to the instability of the starting structure in its current conformation, why?
6.3.3. Simulating the system#
Now we can start the simulation by writing our simulation script in python.
First, lets import the required modules:
openmm for running the simulation
parmed to read/write the input and output files
# OpenMM Imports
from openmm.app import *
from openmm import *
from openmm.app.dcdreporter import DCDReporter
# ParmEd Imports
from parmed import load_file, unit as u
from parmed.openmm import StateDataReporter
# System modules
import sys
6.3.3.1. Loading Amber files#
In this stage, we simply instantiate the AmberParm object from the input topology and coordinate files. After this command, trp_cage_gas
will contain a full description of every particle, the parameters defining their interactions, and their position.
# Load the Amber files
print('Loading AMBER files...')
trp_cage_gas = load_file('trp_cage.prmtop', 'trp_cage_linear.nc')
Loading AMBER files...
6.3.3.2. Create the OpenMM System#
This command creates an OpenMM System
object from the information stored in
trp_cage_gas
. It contains multiple Force
instances for the bonds, angles,
periodic torsions, and nonbonded (electrostatic and van der Waals) interactions.
It is in this function that we define the potential parameters we want to use.
In this example, we have chosen the default values for each parameter except the
ones specified. In particular:
nonbondedMethod=app.NoCutoff
indicates we do not want to use a cutoff for nonbonded interactions.constraints=app.HBonds
indicates we want to constrain all bonds in which at least one atom is a Hydrogen (i.e., SHAKE or SETTLE for water). Other options areNone
(no constraints),app.AllBonds
, orapp.HAngles
.implicitSolvent=app.GBn2
indicates we want to use the second GBneck model described in Nguyen et al., J. Chem. Theory Comput., 2014 9(4) p.2020-2034.implicitSolventSaltConc=0.1*u.liters/u.mole
indicates we want to model a ca. 0.1 molar solution of monovalent ions using a Debye screening model.
# Create the OpenMM system
print('Creating OpenMM System')
system = trp_cage_gas.createSystem(nonbondedMethod=app.NoCutoff,
constraints=app.HBonds, implicitSolvent=app.GBn2,
implicitSolventSaltConc=0.1*u.moles/u.liter,
)
Creating OpenMM System
6.3.3.3. Create the integrator to do Langevin Dynamics#
In this stage we specify an integrator. Common choices are
LangevinIntegrator
(as we’ve chosen here) to do simulations in the NVT
ensemble. In this
example, we’ve chosen the Langevin integrator with a target temperature of
300 K, a friction coefficient of 1/ps and a time step of 0.5 fs.
# Create the integrator to do Langevin dynamics
integrator = openmm.LangevinIntegrator(
0*u.kelvin, # Temperature of heat bath
1.0/u.picoseconds, # Friction coefficient
0.5*u.femtoseconds, # Time step
)
6.3.3.4. Create the Simulation
object#
This step creates a Simulation
object that will be used to run the actual
simulations. OpenMM picks the fastest platform for us
if we do not specify a platform.
# Create the Simulation object
sim = app.Simulation(trp_cage_gas.topology, system, integrator,)
This stage is very important. In this step, we set the particle positions
stored in the trp_cage_gas
object to our object. If you omit this step, you can
get strange results or other errors like segmentation violations. These particle
positions have been parsed from the input coordinate file.
# Set the particle positions
sim.context.setPositions(trp_cage_gas.positions)
6.3.3.5. Minimize the energy#
This stage performs a basic energy minimization to relax particle positions. This particular invocation will perform at most 500 iterations.
# Minimize the energy
print('Minimizing energy')
sim.minimizeEnergy(maxIterations=500)
state = sim.context.getState(getEnergy=True)
print(state.getPotentialEnergy())
6.3.3.6. Heating phase#
After having obtained the minimized coordinates of our system we can begin slowly heating it.
We define reporters that will “report” on the status of the simulation
periodically throughout the heating phase. The first is a StateDataReporter
which will print out a summary of energies and temperatures every 500 steps.
This reporter directs the printout to standard output (the screen), sys.stdout
or to a file name (if set).
The second reporter is a NetCDF trajectory reporter, which is written in the Amber NetCDF format.
print('Heating phase')
sim.reporters.append(StateDataReporter('heating.csv', 500, step=True, potentialEnergy=True, kineticEnergy=True, temperature=True)
)
sim.reporters.append(
DCDReporter('trp_cage_heating.dcd', 500)
)
for i in range(5):
integrator.setTemperature(65*(i+1)*u.kelvin)
sim.step(500) ## Change this in order to run 50 ps of heating in 5 steps
state = sim.context.getState(getPositions=True)
minimized_and_heated=state.getPositions()
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
df=pd.read_csv('heating.csv')
fig, ax = plt.subplots(1)
ax.plot(df['Time (ps)'],df['Potential Energy (kilocalorie/mole)'], label='Epot')
ax.plot(df['Time (ps)'],df['Kinetic Energy (kilocalorie/mole)'], label='Ekin')
ax.plot(df['Time (ps)'],df['Total Energy (kilocalorie/mole)'], label='Etot')
ax.set_xlabel('t (ps)')
ax.set_ylabel('Energy (kcal/mol)')
ax.legend()
plt.show()
fig, ax = plt.subplots(1)
ax.plot(df['Time (ps)'],df['Temperature (K)'], label='Temperature')
ax.set_xlabel('t (ps)')
ax.set_ylabel('Temp (K)')
ax.legend()
plt.show()
6.3.4. Running dynamics#
We first reset our Integrator to update the timestep, create the simulation object and then we actually run the MD of our heated system to see if our linear peptide folds up into its 3D form. We use again the NetCDF
and StateDataReporter
to retrieve information about our simulation.
# Create the integrator to do Langevin dynamics
integrator = openmm.LangevinIntegrator(
325*u.kelvin, # Temperature of heat bath
1.0/u.picoseconds, # Friction coefficient
2.0*u.femtoseconds, # Time step
)
# Create the Simulation object
sim = app.Simulation(trp_cage_gas.topology, system, integrator)
# Set the particle positions
sim.context.setPositions(minimized_and_heated)
# Set up the reporters to report energies and coordinates every 50000 steps
sim.reporters.append(
StateDataReporter('production.csv', 50000, step=True, potentialEnergy=True,
kineticEnergy=True, temperature=True)
)
# Additionally print to the output of the notebook, so that we can track the simulation.
sim.reporters.append(
StateDataReporter(sys.stdout, 50000, step=True, potentialEnergy=True,
kineticEnergy=True, temperature=True)
)
sim.reporters.append(
DCDReporter('trp_cage_gb.dcd', 50000)
)
# Run dynamics
print('Running dynamics')
sim.step(1) # change this to run 20 ns of simulation
# Plotting energy from production simulation
df=pd.read_csv('production.csv')
fig, ax = plt.subplots(1)
ax.plot(df['Time (ps)'],df['Potential Energy (kilocalorie/mole)'], label='Epot')
ax.plot(df['Time (ps)'],df['Kinetic Energy (kilocalorie/mole)'], label='Ekin')
ax.plot(df['Time (ps)'],df['Total Energy (kilocalorie/mole)'], label='Etot')
ax.set_xlabel('t (ps)')
ax.set_ylabel('Energy (kcal/mol)')
ax.legend()
plt.show()
print('Average temperature')
print(f"{np.mean(df['Temperature (K)']):.3f} +- {np.std(df['Temperature (K)']):.3f} ")
fig, ax = plt.subplots(1)
ax.plot(df['Time (ps)'],df['Temperature (K)'], label='Temperature')
ax.set_xlabel('t (ps)')
ax.set_ylabel('Temp (K)')
ax.legend()
plt.show()
6.3.5. Save trajectory for later processing#
Now we zip the files. Once the archive.zip file appears in the folder to the left of your colab space (select the folder icon if hidden), then download the achieve.zip file using the three dot menu. You will upload this zip file in noto for the next section of the exercise.
!zip archive.zip trp_cage* production.csv heating.csv